Ai Cheat Sheet
  • Home
  • Statistics ↓↑
    • Types of Measure
    • Population and Sample
    • Outliers
    • Variance
    • Standard Deviation
    • Skewness
    • Percentiles
    • Deciles
    • Quartiles
    • Box and Whisker Plots
    • Correlation and Covariance
    • Hypothesis Test
    • P Value
    • Statistical Significance
    • Bootstrapping
    • Confidence Interval
    • Central Limit Theorem
    • F1 Score (F Measure)
    • ROC and AUC
    • Random Variable
    • Expected Value
    • Central Limit Theorem
  • Probability ↓↑
    • What is Probability
    • Joint Probability
    • Marginal Probability
    • Conditional Probability
    • Bayesian Statistics
    • Naive Bayes
  • Data Science ↓↑
    • Probability Distribution
    • Bernoulli Distribution
    • Uniform Distribution
    • Binomial Distribution
    • Poisson Distribution
    • Normal Distribution
    • T-SNE
  • Data Engineering ↓↑
    • Data Science vs Data Engineering
    • Data Architecture
    • Data Governance
    • Data Quality
    • Data Compliance
    • Business Intelligence
    • Data Modeling
    • Data Catalog
    • Data Cleaning
    • Data Format
      • Apache Avro
    • Tools
      • Data Fusion
      • Dataflow
      • Dataproc
      • BigQuery
    • Cloud Platforms
      • GCP
    • SQL
      • ACID
      • SQL Transaction
      • Query Optimization
    • Data Engineering Interview Questions
  • Vector and Matrix
    • Vector
    • Matrix
  • Machine Learning ↓↑
    • L1 and L2 Loss Function
    • Linear Regression
    • Logistic Regression
    • Naive Bayes Classifier
    • Resources
  • Deep Learning ↓↑
    • Neural Networks and Deep Learning
    • Improving Deep Neural Networks
    • Structuring Machine Learning Projects
    • Convolutional Neural Networks
    • Sequence Models
    • Bias
    • Activation Function
    • Softmax
    • Cross Entropy
  • Natural Language Processing ↓↑
    • Linguistics and NLP
    • Text Augmentation
    • CNN for NLP
    • Transformers
      • Implementation
  • Computer Vision ↓↑
    • Object Localization
    • Object Detection
    • Bounding Box Prediction
    • Evaluating Object Localization
    • Anchor Boxes
    • YOLO Algorithm
    • R-CNN
    • Face Recognition
  • Time Series
    • Resources
  • Reinforcement Learning
    • Reinforcement Learning
  • System Design
    • SW Diagramming
    • Feed
  • Tools
    • PyTorch
    • Tensorflow
    • Hugging Face
  • MLOps
    • Vertex AI
      • Dataset
      • Feature Store
      • Pipelines
      • Training
      • Experiments
      • Model Registry
      • Serving
        • Batch Predictions
        • Online Predictions
      • Metadata
      • Matching Engine
      • Monitoring and Alerting
  • Interview Questions ↓↑
    • Questions by Shared Experience
  • Contact
    • My Personal Website
Powered by GitBook
On this page
  • Stochastic Neighbor Embedding
  • References

Was this helpful?

  1. Data Science ↓↑

T-SNE

PreviousNormal DistributionNextData Science vs Data Engineering

Last updated 5 years ago

Was this helpful?

Stochastic Neighbor Embedding

T-SNE is a machine learning algorithm for data visualization (usually), which is based on a nonlinear dimensionality reduction technique.

The basic idea of t-SNE is to reduce dimensional space keeping relative pairwise distance between points. In other words, the algorithm maps multi-dimensional data to two or more dimensions, where points which were initially far from each other are also located far away, and close points are also converted to close ones.

It can be said that t-SNE looking for a new data representation where the neighborhood relations are preserved.

References

Google News and Leo Tolstoy: Visualizing Word2Vec Word Embeddings with t-SNEMedium
Logo