Logistic Regression

1. Logistic Model

Consider a model with features x1,x2,x3...xnx_1, x_2, x_3 ... x_n . Let the binary output be denoted by yy , that can take the values 0 or 1. Let pp be the probability of y=1y = 1 , we can denote it as p=P(y=1)p = P(y=1) . The mathematical relationship between these variables can be denoted as:

ln(p1p)=θ0+θ1x1+θ2x2+θ3x3ln(\frac{p}{1-p}) = \theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3\\

Here the term p1p\frac{p}{1−p} is known as the odds and denotes the likelihood of the event taking place. Thus ln(p1p)ln(\frac{p}{1−p}) is known as the log odds and is simply used to map the probability that lies between 0 and 1 to a range between (−∞, +∞). The terms θ1,θ2,θ3,...\theta_1,\theta_2,\theta_3,...are parameters (or weights) that we will estimate during training.

It is actually Sigmoid!

ln(p1p)=θ0+θ1x1+θ2x2+θ3x3p1p=eθ0+θ1x1+θ2x2+θ3x3eθ0+θ1x1+θ2x2+θ3x3p(eθ0+θ1x1+θ2x2+θ3x3)=pp+p(eθ0+θ1x1+θ2x2+θ3x3)=eθ0+θ1x1+θ2x2+θ3x3p(1+eθ0+θ1x1+θ2x2+θ3x3)=eθ0+θ1x1+θ2x2+θ3x3p=eθ0+θ1x1+θ2x2+θ3x31+eθ0+θ1x1+θ2x2+θ3x3p=eθ0+θ1x1+θ2x2+θ3x3eθ0+θ1x1+θ2x2+θ3x31+eb0+b1x1+b2x2+b3x3eθ0+θ1x1+θ2x2+θ3x3p=11+1eθ0+θ1x1+θ2x2+θ3x3p=11+e(θ0+θ1x1+θ2x2+θ3x3)S(x)=11+exln(\frac{p}{1-p}) = \theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3\\ \frac{p}{1-p} = e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}\\ e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3} - p(e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}) = p\\ p + p(e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}) = e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}\\ p(1 + e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}) = e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}\\ p = \frac {e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}}{1 + e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}}\\ p = \frac {\frac{e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}}{e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}}}{\frac{1 + e^{b_0+b_1x_1+b_2x_2+b_3x_3}}{e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}}}\\ p = \frac {1}{1+\frac{1}{e^{\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3}}}\\ p = \frac {1}{1+e^{-(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_3)}}\\ S(x)=\frac{1}{1+e^{-x}}

Now we will be using the above equation to make our predictions. Before that we will train our model to obtain the values of our parameters θ1,θ2,θ3,...\theta_1,\theta_2,\theta_3,... that result in least error.

2. Define the Loss Function

A L2 Loss function such as Least Squared Error will do the job.

L=i=1n(ytrueypredicted)2L = \sum_{i=1}^n (y_{true}-y_{predicted})^2

3. Utilize the Gradient Descent Algorithm

You might know that the partial derivative of a function at its minimum value is equal to 0. So gradient descent basically uses this concept to estimate the parameters or weights of our model by minimizing the loss function.

  1. Initialize the weights, θ0=0\theta_0=0 and θ1=0\theta_1=0 .

  2. Calculate the partial derivative with respect to θ0\theta_0 and θ1\theta_1 dθ0=2i=1n(yiyiˉ)×yiˉ×(1yiˉ)dθ1=2i=1n(yiyiˉ)×yiˉ×(1yiˉ)×xid_{\theta_0} = -2 \sum_{i=1}^n(y_i - \bar{y_i}) \times \bar{y_i} \times (1 - \bar{y_i})\\ d_{\theta_1} = -2 \sum_{i=1}^n(y_i - \bar{y_i}) \times \bar{y_i} \times (1 - \bar{y_i}) \times x_i

  3. Update the weights - values of b0b_0 and b1b_1 θ0=θ0l×dθ0θ1=θ1l×dθ1\theta_0 = \theta_0 - l \times d_{\theta_0} \\ \theta_1 = \theta_1 - l \times d_{\theta_1}

Python Implementation

Last updated

Was this helpful?