Ai Cheat Sheet
  • Home
  • Statistics ↓↑
    • Types of Measure
    • Population and Sample
    • Outliers
    • Variance
    • Standard Deviation
    • Skewness
    • Percentiles
    • Deciles
    • Quartiles
    • Box and Whisker Plots
    • Correlation and Covariance
    • Hypothesis Test
    • P Value
    • Statistical Significance
    • Bootstrapping
    • Confidence Interval
    • Central Limit Theorem
    • F1 Score (F Measure)
    • ROC and AUC
    • Random Variable
    • Expected Value
    • Central Limit Theorem
  • Probability ↓↑
    • What is Probability
    • Joint Probability
    • Marginal Probability
    • Conditional Probability
    • Bayesian Statistics
    • Naive Bayes
  • Data Science ↓↑
    • Probability Distribution
    • Bernoulli Distribution
    • Uniform Distribution
    • Binomial Distribution
    • Poisson Distribution
    • Normal Distribution
    • T-SNE
  • Data Engineering ↓↑
    • Data Science vs Data Engineering
    • Data Architecture
    • Data Governance
    • Data Quality
    • Data Compliance
    • Business Intelligence
    • Data Modeling
    • Data Catalog
    • Data Cleaning
    • Data Format
      • Apache Avro
    • Tools
      • Data Fusion
      • Dataflow
      • Dataproc
      • BigQuery
    • Cloud Platforms
      • GCP
    • SQL
      • ACID
      • SQL Transaction
      • Query Optimization
    • Data Engineering Interview Questions
  • Vector and Matrix
    • Vector
    • Matrix
  • Machine Learning ↓↑
    • L1 and L2 Loss Function
    • Linear Regression
    • Logistic Regression
    • Naive Bayes Classifier
    • Resources
  • Deep Learning ↓↑
    • Neural Networks and Deep Learning
    • Improving Deep Neural Networks
    • Structuring Machine Learning Projects
    • Convolutional Neural Networks
    • Sequence Models
    • Bias
    • Activation Function
    • Softmax
    • Cross Entropy
  • Natural Language Processing ↓↑
    • Linguistics and NLP
    • Text Augmentation
    • CNN for NLP
    • Transformers
      • Implementation
  • Computer Vision ↓↑
    • Object Localization
    • Object Detection
    • Bounding Box Prediction
    • Evaluating Object Localization
    • Anchor Boxes
    • YOLO Algorithm
    • R-CNN
    • Face Recognition
  • Time Series
    • Resources
  • Reinforcement Learning
    • Reinforcement Learning
  • System Design
    • SW Diagramming
    • Feed
  • Tools
    • PyTorch
    • Tensorflow
    • Hugging Face
  • MLOps
    • Vertex AI
      • Dataset
      • Feature Store
      • Pipelines
      • Training
      • Experiments
      • Model Registry
      • Serving
        • Batch Predictions
        • Online Predictions
      • Metadata
      • Matching Engine
      • Monitoring and Alerting
  • Interview Questions ↓↑
    • Questions by Shared Experience
  • Contact
    • My Personal Website
Powered by GitBook
On this page
  • Discrete Random Variables
  • Continuous Random Variables

Was this helpful?

  1. Statistics ↓↑

Random Variable

PreviousROC and AUCNextExpected Value

Last updated 4 years ago

Was this helpful?

A random variable is a variable that is subject to randomness, which means it can take on different values.

  • In statistics, it is normal to use an X to denote a random variable.

  • The random variable takes on different values depending on the situation.

  • Each value of the random variable has a probability or percentage associated with it.

Discrete Random Variables

A discrete random variable is a variable that represents numbers found by counting. For example, number of marbles in a jar, number of students present or number of heads when tossing two coins.

X is discrete because the numbers that X represents are isolated points on the number line.

The number of heads that can come up when tossing two coins is a discrete random variable because heads can only come up a certain number of times: 0, 1, or 2. Also, we want to know the probability associated with each value of the random values.

A probability distribution has all the possible values of the random variable and the associated probabilities.

Continuous Random Variables

When we have to use intervals for our random variable or all values in an interval are possible, we call it a continuous random variable.

Thus, continuous random variables are random variables that are found from measuring - like the height of a group of people or distance traveled while grocery shopping or student test scores.

In this case, X is continuous because X represents an infinite number of values on the number line.

Like the coin example, the random variable (in this case, the intervals) would have certain probabilities or percentages associated with it. And this would be a probability distribution for the test scores.

In the study of probability, we are interested in finding the probabilities associated with each value of these random variables.

Sum of Probabilities for a Distribution On the above, in each table, the sum of all probabilities add up to 1 or 100%. However, for continuous random variables, we can construct a histogram of the table with relative frequencies, and the area under the histogram is also equal to 1.

A probability distribution for the number of heads (our random variable) when you toss two coins.